
J. Fluid Mech. (1969), wol. 36, part 1, pp. 87-112 

Printed in Great Britain 
87 

Heat transfer and transition to turbulence in the shock- 
induced boundary layer on a semi-infinite flat plate 
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The results of experiments designed to investigate the shock-induced boundary 
layer on a semi-infinite flat plate are described. 

Those for the laminar boundary layer are shown to be in agreement witha theory 
due to Lam & Crocco (1958) which describes two distinct domains, one near the 
shock where the flow is quasi-steady in a shock-fixed co-ordinate system and an 
unsteady region in which the flow characteristics approach the familiar steady 
state asymptotically. Experimental results are also presented for the non- 
laminar boundary layer. In  particular the transition to turbulence in this unsteady 
boundary layer is discussed in some detail. 

‘Establishment times ’ for steady boundary layers are given for both laminar 
and turbulent flows, and their relevance to the testing times available in shock 
tubes is discussed. $he measured heat transfer rates are compared with existing 
theories. 

1. Introduction 
The shock tube and its modifications are widely used for the generation of high 

enthalpy, high speed flows. One of the more prominent features of such devices, 
the short available test time, constitutes both an advantage and a disadvantage. 
It is an advantage in so far as neither the shock tube structure nor models placed 
in the flow suffers ablation in such a short time (of order milliseconds or less). On 
the other hand one is faced with serious measurement problems which have been 
overcome only relatively recently. Although the shock tube was invented by 
Vieille as long ago as 1899, it was not until the advent of electronics and high- 
speed data recording by means of cathode ray oscillographs that useful aero- 
dynamic data could be obtained. Even so a fundamental problem remains. 

It is well known that when a flow takes place in the vicinity of a body in an 
unsteady manner there is a phase lag during which the flow characteristics adjust 
towards the new situation. The general flow field about a body may be broadly 
divided into three regions : the external field, the boundary layer and the wake. 
The adjustment of each of these regions does not take place at  a common rate 
because the mechanism producing change is different for each. Adjustment 
of the external flow field takes place largely as a result of wave propagation, which 
implies quasi-steadiness after a time equivalent to fluid particles travelling a few 
body lengths, since wave velocities are at  least sonic. Adjustment of the bound- 
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ary-layer flow is the result of diffusion, either molecular or turbulent. This is a 
considerably slower process than that due to wave propagation, but the thinness 
of the boundary layer somewhat compensates for this. The time required for 
wake flow adjustment depends upon processes that are not well understood. 
Some features of the wake are probably established by wave propagation, its 
overall shape for example, others by diffusion. The critical feature is likely to be 
the governing mechanism for the spreading of vorticity within the wake. If 
wave propagation dominates, the time will be short; if the process is diffusion 
dominated the time may be comparatively long. 

In  the present paper we confine attention to the establishment of the boundary- 
layer flow. That the vorticity generated at  the surface of a body moving relative 
to a fluid takes time to diffuse into the flow is well illustrated by Rayleigh’s 
(1911) classic analysis of the laminar, viscous isochoric flow set up by the im- 
pulsive motion of an infinite flat plate in its own plane, in an initially stationary 
fluid. The process is an asymptotic one. That is, the final ‘steady ’ state is reached 
only after an infinite time. It is possible to define a time at which the flow differs 
from the asymptotic state by however small a margin one desires. Indeed there 
is a sense in which all physical situations should be analyzed by including the 
time dependence, since all states have to ‘ come about ’ from a different previous 
state. Experience shows us, however, that in many cases the approach to the 
steady state is sufficiently rapid that it need not concern us, and we need only 
examine the steady case. 

In the shock-tube environment, this is not SO obvious. For example, we may 
be interested in simulating the steady flow past a model. We are aware that 
diffusion processes require time, yet the quasi-steady flow available exists for 
only a short time. It is essential to ascertain that the establishment of the bound- 
ary layer which forms close to the surface of the model takes place in a time 
which is significantly less than the available test time. Again we may expect to 
be faced with an asymptotic process and also with a situation in which after some 
finite time the departure from the final state is negligibly small. 

Rayleigh’s problem has already been mentioned. Other workers have developed 
solutions for the impulsive motion of an infinite plate in a compressible fluid 
(Howarth 1951 and Stewartson 1955) and for a semi-infinite? plate moved normal 
to its edge and in its own plane (Stewartson 1951). In  these impulsive motions 
all particles in contact with the plate are set into motion at  the same instant. In  
this respect they differ from the present problem. In the shock tube it is the  pas- 
sage of the shock which sets the fluid in motion and different positions on the model 
are affected at  different times. This is partly true of the semi-infinite flat plate 
case analyzed by Stewartson (1951) but for different reasons. In  that case different 
parts of the plate ‘become aware ’ of the leading edge at  different times. 

In the shock tube, clearly the simplest model is a stationary flat plate of infinite 
extent aligned parallel or perpendicular to the plane shock travelling down the 
shock tube. In  the first case the solution is trivial in the present context. The shock 
is reflected to leave stagnant gas in contact with the plate. In  the second the situa- 

-f The term ‘semi-infinite’ is used to imply that the plate occupies say only the positive 
half of the plane yOz : that is Ox, is a cross-section. 
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tion is essentially that which exists on the wall of a rectangular cross-section 
shock tube in which corner effects are ign0red.t The boundary layer which grows 
from the foot of the shock is clearly quasi-steady in a co-ordinate system which 
moves with the shock. This problem has been analyzed by several workers (see, 
for example, Mirels 1956 and Ackroyd 1967). It is discussed more fully in $ 2  
since it has a direct bearing on the present problem. Many experiments have 
been carried out which give confidence in Mirels’s solutions. 

The next stage in complexity is a semi-infinite flat plate aligned with its plane 
normal and its edge parallel to the shock. It is this case which forms the subject 
of the present investigation. In  the neighbourhood of the model the flow begins 
when the shock arrives at  the leading edge of the plate. A boundary layer then 
forms on the surface of the plate and this boundary layer has two ‘leading edges ’, 
one at  the foot of the shock, the other at  the leading edge of the plate. We might 
intuitively expect all those particles initially downstream of the plate leading 
edge to behave in exactly the same way as particles on the shock-tube wall. 
This has been formally shown to be so in an elegant analysis by Lam & Crocco 
(1958) which is discussed in $2. After an infinite time we expect a steady state 
to be reached, and Lam & Crocco have succeeded in describing the approach 
to this asymptote for the laminar boundary layer. We shall describe an experi- 
mental investigation designed to test the results of Lam & Crocco and confirm 
that ‘steady’ boundary layers can indeed be set up around a simple model 
mounted in a shock tube in spite of the short duration of quasi-steady flow. 
We imply here that after a finite time significantly shorter than the available test 
time, the boundary-layer characteristics differ little from their asymptotic values. 

In  order to demonstrate this the theoretical predictions of Mirels and of Lam 
& Crocco are discussed in some detail in the following section. An earlier, less 
general solution of the present problem due to Dem’yanov (1957) is also briefly 
mentioned. Attention is focused on those analytical resu1t.s which have a direct 
bearing on the measurements actually made in the experimental investigation. 
In  particular the predictions regarding heat transfer rate and surface tempera- 
ture history are discussed for subsequent comparison with the experiments. 

The analytical solutions mentioned so far have all been for the case of the 
laminar boundary layer. In  practice of course the boundary layer may not remain 
laminar. Mirels (1956) has produced a semi-empirical solution for the turbulent 
boundary-layer growth behind the shock on a shock-tube wall. Lack of relevant 
experimental data necessitated his use of steady incompressible flow data. 
Spence & Woods (1960) used steady compressible flow data in an attempt to 
solve the same problem, but all such approaches are open to criticism (see Bern- 
stein 1 9 6 3 ~ ) .  In  the present problem not only did no experimental data exist, but 
also where Mirels’ problem is steady in a shock fixed co-ordinate system, this one 
is essentially time dependent in the region of the plate leading edge. Thus no 
semi-empirical formulation could be made. 

Some measurements have been made and are reported here which show that 
the ‘flow establishment time’ is shorter for the turbulent than for the laminar 

t Strictly, such a shock tube would have to be infinitely long, so that the presence of 
the driver gas did not complicate the situation. 
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boundary layer. This is to be expected in view of the better mixing in a turbulent 
boundary layer; that is, turbulent diffusion is more efficient than molecular 
diffusion at spreading vorticity . Some interesting results are also reported con- 
cerning the nature of the transition process in this boundary layer with two leading 
edges. These results are shown to be consistent with the relevant features of the 
boundary layer as predicted by Lam & Crocco. 

2. Theory 
Let us suppose that a semi-infinite flat plate is immersed in a stationary com- 

pressible gas of infinite extent whose thermodynamic state is characterized by 
suffix 1, and let the origin of a co-ordinate system (2, y )  lie in the leading edge of 
the plate with the plate cross-section occupying the positive x-axis. A plane shock 
wave normal to the x-axis approaches with velocity w1 in the positive x-direction 
and arrives at the plate leading edge at time t = 0. Fort > 0 the shock travels over 
the plate. The gas velocity behind the advancing shock is denotedt by u2. The 
shock strength is characterized by the shock Mach number W,, = wl/ccl, where a, 
is the sound speed ahead of the shock, or by the velocity ratio wl/u2 which proves 
to be more useful in the present problem. 

(i) Laminar boundary layer 
Making the assumptions that both the Prandtl number CT = pc,/k and pp are 
constant throughout the boundary layer which develops between the foot of the 
shock and the leading edge of the plate (figure 1)’ Lam & Crocco (1958) have 
succeeded in analyzing the case when the boundary layer is laminar. Here p 
is the viscosity, p the density, k the thermal conductivity and c, the isobaric 
specific heat capacity of the gas. The boundary-layer equations are first trans- 
formed so that the independent variables are (a, p, y )  given by 

where u denotes the kinematic viscosity of the gas and suffix denotes values 
outside the boundary layer and behind the shock. Shear stress and enthalpy 
are used as dependent variables. 

The region of interest in the (a, p, y )  space is then a right rectangular prism 
open in the + y direction, more particularly, the solution of the boundary-layer 
equations is required in the region 

O<a<w, /u , ;  o < p <  1; y 2 0 .  (2) 

They show that this region may be divided into two parts separated by the 
singular plane tl. = 1. This singular plane clearly maps onto the (2, t )  plane as the 
path of a particle originating a t  the plate leading edge x = 0,  and travelling out- 
side the boundary layer with velocity u2. All particles for which 1 < a < w,/u2 
originate at 5 3 0,  that is ‘on the plate ’, and have no knowledge of tfhe plate lead- 

? Where possible the  notaeion conforms with standard shock tube practice. 
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ing edge. The boundary layer induced by the shock in this region is precisely 
that formed on a plate without a leading edge and this is known to be quasi- 
steady in a co-ordinate system moving with the shock (Mirels 1955, 1956). 

c .  

Distance from leading edge X 

TranSducer 

FIGURE 1. The flow in the distance-time plane illustrating the co-ordinate 
system. 

We thus have two regions defined: a quasi-steady region 

1 < a: < w,/u,; 0 < p < 1;  y > 0 ( 3 a )  

O < a < l ;  o < p < 1 ;  y 2 0 .  (3b)  

and an interaction region 

The quasi-steady region. The quasi-steady region is only briefly discussed by 
Lam & Crocco but has been analyzed by Mirels (1955, 1956) in considerable 
detail. Their results are in excellent agreement. 

Mirels gives an expression for the heat transfer rate into the plate as 

fjw = s‘(0) [T, - T,] 3 J(PwPw~tW-U2’) > 

0- 
(4) 

where x, is the distance from the shock, T, is the temperature of the surface of the 
plate, T, is the recovery temperature defined by 

T, = T2{1 +r(O)&(T-- 1 )  Mi} ,  
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7 is the ratio of principal specific heat capacities, M, is the flow Mach number 
behind the shock, r ( 0 )  and s‘(0) are functions of the boundary-layer velocity 
profiles evaluated by Mirels and suffix denotes values at  the surface ofthe plate. 

From the geometry of the (2, t )  diagram (figure 1) we see that xs is related to the 
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distance xp  travelled by a particle in the inviscid 
motion by the shock, by 

x.&p = (w1- u2)/742. 

If we define a Stantoii number St, by 

St = ._ 4, 
P274zCp(Tr- TLJ) 

and a Reynolds number Re, by 

we mav write (4) in the form 

Bow since it was first set into 

(6) 

( 7 )  

for 

Although in his early work Mirels assumed pp to be constant in order to 
integrate the equations, there is no need to carry this assumption into (9). In  
latcr work, Mirels (1961) was able to relax this assumption. He also produced 
interpolation formulae for r (0)  and s’(0) which closely fit his numerical results. 
Equation (9) is thereby modified to become 

1 Q a: Q W1lUz. 

with 
and 

where r2, = wl/(zul - u2), is the density ratio across the shock. 

We thus expect t,hat, for a given shock, 
For a given strength shock, the right-hand side of (9a)  is independent of time. 

qw Jxp = constant, in the range 1 6 a Q w,/u2. 

Now suppose the shock arrives at  a particular station x on the plate at a time 
t , ,  after passing the leading edge. Then 

(12) 
5=- u2w1 

t-tl w1-u2’ 

Thus qw,y’(t - tl) = constant 113) 
in the range 1 < a: 6 wl/u2 for a particular shock. The time ( t  - t l)  is that displayed 
on an oscillograph for examining the output of a transducer placed at this point 
on the plate. A heat transfer rate gauge would therefore be expected to indicate 
a very high ratet of heat transfer as the shock arrived, and this should then 
diminish as (t - tl)-h. 

t The infinite rate predicted by equation (13) as t + t,  cannot occur in practice because 
the shock thickness is finite. At the foot of the shock the assumptions upon which the 
boundary-layer equations are based are violated. 
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The variation of surface temperature with time depends upon the thickness of 
the plate. If the latter is much thicker than the thermal boundary layer in the 
wall (a condition easily achieved in practice) then it is well known that with a 
heating rate as given by (13) the wall temperature T, is constant (see, for 
example, Carslaw & Jaeger 1947). 

The interaction region. The interaction region (0  < a: < 1) is extensively studied 
by Lam & Crocco. The assumption pp = constant uncouples the equations of 
momentum and energy conservation so that these may be solved separately. 
It is formally demonstrated that the flow in the quasi-steady region is unaffected 
by the interaction region and that the proper solution in the interaction region 
requires the prior solution of the quasi-steady region since conditions on the 
singular plane a = 1 are needed as boundary conditions in addition to those a t  
the plate leading edge. 

Solutions of the boundary-layer equations were obtained by Lam (1959) for 
several values of wl/uz using a numerical integration procedure. Results are 
presented for the skin friction coefficient Cr(a:) in the form C,(a:)JRe,, the Rey- 
nolds analogy factor Ra(a:, u), the boundary-layer momentum thickness O(a) 
and the boundary-layer form factorH(a) = 8J0, where 8,(a) is the displacement 
thickness. The Reynolds analogy factor is defined by 

Ra = 2St/C,. (14) 
From the tabulated data one may construct curves of St JRe, as a function of 

A t  a = 1 the distance xp moved by a particle is equal to its distance x: from the 
a: for several values of the Prandtl number u. 

leading edge of the plate. We should thus expect to find 

and the two sets of results agree very closely. 
As t -+ 03 and the shock is far from the leading edge of the plate, we should 

expect the particles in the neighbourhood of the leading edge to have 'forgotten' 
how they were set in motion. In  other words, we expect the flow near the leading 
edge of the plate to resemble the steady, laminar, compressible flow over a flat 
plate analyzed by Crocco (see Young 1953, chapter X). This is indeed the case, 
the Crocco steady flow solution is the asymptotic solution as a+Ot of the un- 
steady flow equations examined by Lam & Crocco. 

In  fact StdRe, remains sensibly constant in a range 0 < a: < ml; the value of a1 
is arbitrary until one specifies the degree of approach of [Xt.JRe,lal to its asymp- 
totic value. For u = 0-7, StJRe, remains constant to within 5 % over the range 
0 < a: < 0-3 for a wide range of shock strengths. 

Young (1953) discusses in some detail the effects of freestream Mach number 
and wall temperature when pp $: constant. He gives an approximate formula 
for 6; JRe, which may be used with a modified Reynolds analogy to give for the 
steady heat transfer rate 

(15) 
where w is the index in the power-law viscosity-temperature relation. 

layer formulation breaks down close to the plate leading edge. 

(St 2iRex}a=I = {St J ~ e q J M i r e l s ,  pp = const. 

St JRe, = 0-332a-*(0-45 + 0.55T,/T2 + 0.09(7 - 1) aiN;}t((d-l), 

t Note that a + 0 must be taken to imply t + co rather than z --f 0, since the boundary- 
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Over the range 0 < a < 0-3 in which StJRe, is sensibly constant, we infer that 
for a particular point on the plate (x fixed), the heat transfer rate q, is constant 
for a given shock. The solution to the conduction equation for a constant heating 
rate of a semi-infinite solid, to which the experimental situation closely approxi- 
mates, is well known (Carslaw & Jaeger 1947); the surface temperature T, 
increases in proportion to the square root of time 

In  the times of practical interest in a shock tube, the change in T, is very much 
smaller than T,. Thus, in evaluating the right-hand side of (15)’ T, is taken to be 
equal to T,, the temperature of the quiescent gas before the arrival of the shock. 

Lam experienced some technical difficulty in the numerical integration of the 
equations. An analysis based on the momentum integral equation was therefore 
developed to provide a ‘correction procedure’. The singularity a = 1 of the 
detailed analysis becomes a singular point a = a* in the momentum integral 
approach and this enabled both boundary conditions (at a = 0 and a = wl/up)  
to be satisfied simultaneously, though there is a discontinuity in slope at  a = a*. 
The singularity is shown to be the root of the equation 

On the further assumption that the dimensionless momentum and displace- 
ment thicknesses are constants, that is, assuming ‘similar solutions ’, they show 
that in the range 0 < a < a*, 

CrJRe, = &w, 
the well-known Crocco value. This implies that the boundary layer growing from 
the leading edge of the plate is ‘steady’ as far as a = a* = 1/2‘?(a*). Lam’s 
numerical soIutions for the case pp = constant show that a* x 0.40 for all shock 
strengths. Compared with the previously quoted value a1 = 0.3 as an approxi- 
mate ‘upper’ bound for constant StJReZ, the momentum integral approach 
gives somewhat optimistic results. 

Dem’yanov (1957) has also considered the present problem. His approach was 
somewhat different but he too employed a numerical integration procedure. 
He also considered the solution of the momentum integral equation and his 
results are essentially in agreement with those of Lam & Crocco. 

We may conveniently summarize these results by restricting our attention to 
what happens at  a particular station on the plate as the shock arrives and then 
passes ‘downstream’. This will help in the interpretation of the output, as a 
function of time, of a heat transfer rate gauge placed at  this station, which is what 
is displayed on an oscillograph. 

As the shock arrives (a time x/wl after passing the leading edge of the plate) 
there is a step-rise in temperature of the gas adjacent to the surface and therefore 
there is a jump in surface temperature. In theory the corresponding heating rate 
is infinite but in practice there is some rounding-off due to the finite shock thick- 
ness; the heat transfer rate to the wall, however, is very large. After the shock 
passage, the heat transfer rate varies inversely as the square root of the time since 
shock passage, until the arrival of particles which originated a t  x = 0 (i.e. until 
the arrival of the a = 1 characteristic). The corresponding surface temperature 
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remains constant at its value just after shock passage. Thereafter the heat trans- 
fer rate will vary with time indefinitely influenced by both the shock and the 
leading edge of the plate and the surface temperature will rise. However, after 
a time corresponding to CL x 0.3, the heat transfer rate will remain sensibly 
constant while the surface temperature rises in proportion to the square root of 
time (provided of course that it does not rise too far). 

Idealized surface temperature and heat transfer rate variations are shown in 
figure 2 (a) .  

1 - 1 ,  

(a)  

q?, 4\ Transition 

\ Steady flow 
values 

Possible 
I alternatives ' 

~ 

point 

7 
~ ~~~ 

t - i ,  

( 6 )  
F I G ~ E  2. Anticipated oscillosope records for (a)  the laminar 

and ( b )  the non-laminar boundary layer. 

(ii) Transitional boundary layer 
The analyses so far discussed have been carried out on the assumption that the 
boundary layer is laminar. It may not remain so in practice. No analytical pro- 
cedure is available for predicting the behaviour of a time-dependent non-laminar 
boundary layer. However, one may discuss it from a phenomenological stand- 
point. The laminar boundary layer becomes unstable to small disturbances when 
the Reynolds number based upon some measure of its thickness exceeds a certain 
critical value. In  the steady boundary layer growing on a flat plate, distance from 
the leading edge is a convenient measure of the boundary-layer thickness. In  an 
unsteady boundary layer this is not sufficient, so that transition is best discussed 



96 W .  R. Davies and L. Bernstein 

directly in terms of the thickness itself. Fortunately this is very convenient 
in the present problem because the boundary layer has a position of maximum 
thickness. Whatever the value of the critical Reynolds number Rec, for given 
external flow conditions, transition will first occur where the boundary layer at  its 
maximum thickness equals the critical value. According to the results of Lam 
the maximum momentum thickness 19 ofthe laminar boundary layer occurs in the 
range 0.57 < a 6 0.60 for a very wide range of shock strengths. Thus we should 
expect non-laminar flow to appear first at  this value of a (though there may 

FIGURE 3. Onset of non-laminar flow. - - - -, 0 = O,,, = transition path ; 
_._._ , ‘path’ of fully doveloped turbulence. 

not be a transducer at just the position where both a = a(&,ax) and emax = Qccrit 

simultaneously). The boundary layer at  any point on the plate thickens further 
with time, so that we should expect non-laminar flow to spread in both direc- 
tions in such a way that only where 6 < Ocrit is the boundary-layer laminar. 
The spread towards the shock takes place in a non-uniform manlier until the 
‘transition point’ reaches the a = 1 characteristic. This ‘forward movement ’ 
may be specified by examination of the boundary-layer thickness profiles as a 
function of time as given by Lam. Once transition arrives at the a = 1 character- 
istic, it  remains a constant distance behind the shock, since in the region 

1 < a 6 WJUZ, 

the laminar boundary-layer thickness depends only upon xs, the distance from 
the shock. 

In  an analogous fashion, the transition point will also move towards the lead- 
ing edge of the plate but, since the laminar boundary layer has to all intents and 
purposes reached its asymptotic state at  a z 0.3, transition will not move nearer 
the leading edge than the value of x corresponding to a E 0.3. This behaviour is 
illustrated schematically in figure 3 on an (x, t )  diagram, where the line 6 = con- 
stant has been sketched between a = 0-6 and a = 0-3.t  In  a practical situation, 
the line s“ = constant probably has curvature of opposite sense to that shown, 

t The foregoing argument is of course based upon the assumption that the velocity 
profile has a secondary effect on transition in this flow. This should not lead to serious 
error. 
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so that it becomes asymptotic to a line x = constant. This could arise if the 
thickening of the boundary layer at transition fed disturbances upstream which 
modified the laminar boundary layer immediately ahead. 

The output response of a heat transfer rate gauge will depend upon where it is 
situated in relation to the points (a) ,  (b)  and (c) on figure 3. A thermometer will 
indicate a surface temperature rise at  transition at  all positions but for positions 
between (a )  and (c) the temperature will already be rising, so it is unlikely to be 
a very noticeable effect. 

For x > xc, the heating rate is falling as (time)-& in the laminar region. As the 
boundary layer undergoes transition, the heating rate may continue to fall, but 
at  a slower rate. The subsequent behaviour depends upon when the turbulence 
becomes fully developed. 

For x, < x < xc the change in the heating rate at  the surface will depend 
upon the relative effectiveness of two opposing tendencies; the local thickening 
of the boundary layer will tend to reduce qw while the enhanced mixing will tend to 
increase it. Since the boundary layer thickens little with time between (a) and (b) ,  
it  is likely that &,, will actually increase slightly. Between (b) and (c)  it may con- 
tinue to fall, particularly near (c), and there may be a region on the plate in which 
qw remains more or less steady before rising as the turbulence level increases. 
This steadiness would be fortuitous because the boundary layer in this region 
is strongly time dependent. 

(iii) Turbulent boundary layer 
For all positions x > x,, the flow is expected to become non-laminar after a time 
indicated by the ‘transition line’ in figure 3. 

In  the neighbourhood of the leading-edge of the plate, at positions x only 
slightly greater than x,, the state of the steady boundary layer is transitional in 
character. But at other downstream positions the boundary layer flow will 
ultimately become fully turbulent. The smallest value of xat which fully turbulent 
flow eventually occurs should correspond with the value obtained in the steady 
flow over a flat plate with a leading edge. The boundary-layer momentum thick- 
ness 0 at this position may be inferred, in principle, from steady data but because 
the growth of the unsteady boundary layer in the transition region is unknown, it 
is not possible to construct a curve (similar to the ‘transition line’ of figure 3) 
which indicates the onset of fully turbulent flow in the boundary layer. 

However we should expect such a curve to exist, and there appears to be no 
a priori reason why it should not be similar in shape to that describing the first 
appearance of non-laminar flow at any point on the plate. Such a hypothetical 
line is shown schematically in figure 3. 

Once the boundary layer has become fully turbulent we may expect the heat 
transfer rate near the leading edge (but downstream of transition) to assume its 
steady ‘asymptotic’ value fairly rapidly. This is inferred on the grounds that the 
process in laminar flow is sensibly complete by the arrival of the a = 0.3 charac- 
teristic and, since turbulent diffusion is a more efficient mixing process than 
molecular diffusion, we might expect the steady state to correspond to a some- 
what higher value, a = a,, say. 

7 Fluid Mech. 36 
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These steady rates of heat transfer should correlate with other workers’ data 
where this is available. Several workers have produced correlation formulae for 
the skin-friction coefficient, based on empirical data. Spence (1960) in particular 
has also produced a Reynolds analogy factor for turbulent heat transfer. Using 
his formulae, we may write 

where the Stanton and Reynolds numbers are based upon properties at the 
mean specific enthalpy h,, defined by 

St,(Re,)i = 0-0296Ra, (17) 

h, = h2(0-55 + 0*45(h,/h2) + 0.035Mz) (18) 
and Ra = 1.18 for the present data. 

In  the present case h, = hl, the value ahead of the shock, and since little error is 
introduced by assuming the gas to be perfect, we may take h proportional to T .  

In the region near the shock, and for a 2 1, the boundary layer should behave 
in an identical manner to that on a shock tube wall. We might therefore expect 
that the ‘fully turbulent ’ line will follow a path in the (2, t )  diagram parallel to 
both the ‘transition line ’ and the shock trajectory. The fully turbulent boundary 
layer growing from the foot of the shockon the shock tube wall has been analyzed 
by Mirels (1956), who used steady incompressible data for the shear stress 
function. Using Reynolds analogy, he predicted that 

Xt Re$ = constant, (19) 
the constant depending upon the shock strength. The one-fifth power corresponds 
to a one-seventh power law velocity profile in a co-ordinate system moving with 
the shock. Hartunian, Russo & Marrone (1960) have carried out measurements 
of heat transfer rate to the walls of a shock tube which largely confirm this rela- 
tion, so we may expect similar results for a 2 1. 

In the range aF < a < 1, the behaviour is unknown, and whether a, falls 
or rises toward its final steady value depends upon the particular position on 
the plate. The latter governs the relative magnitudes of the heat transfer rate as 
the a = 1 characteristic arrives and the asymptotic steady value appropriate 
to the distance x from the leading edge of the plate. 

Semi-empirical relations of the type quoted in (17) and (19) are based upon 
the assumption that the boundary layer is turbulent from the leading edge. 
A4ccordingly, when making comparisons with experimental data obtained under 
conditions where part of the boundary layer is laminar, a correction is usually 
necessary. This correction takes the form of evaluating a ‘false origin’ for the 
turbulent boundary layer. The procedure is well documented and the correction is 
often small. 

3. Experimental investigation 
(i ) Apparatus 

An experimental investigation of the problem has been carried out on a flat 
plate mounted in the low pressure section of the shock tube which forms part of 
the Queen Mary College hypersonic shock tunnel. The shock tube driver chamber 
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is %44m long and 108 mm diameter. The low pressure section, or channel, has a 
uniform cross section, 76.2mm square, and is approximately 9 6 m  long. Cold 
hydrogen was used to drive shocks in nitrogen. 

The flat plate model which was made of steel, has a sharp leading edge formed 
by a 30" included angle. It was mounted so as to span the channel and its leading 
edge was 9-17 m from the main diaphragm. Inset into its upper surface is aPyrex 
plate on which have been deposited thin-film platinum resistance thermometers 
manufactured using Hanovia Liquid Bright Platinum 05. The twelve resistance 
thermometers are situated at  distances from the leading edge between 17.5 mm 
and 115.1 mm and they occupy approximately 30 % of the span, being sym- 
metrically placed about the central chord line. The resistance of each film is 
of order 100 Q. They are supplied with a constant current of about 10mA. 

The output voltage representing a temperature change was displayed directly 
on one beam of a Tektronix 551 cathode ray oscilloscope. The same voltage was 
also led to the input terminals of a heat transfer rate analogue circuit similar to 
that of Meyer (1960); the output signal was displayed on the second beam of the 
cathode ray oscilloscope. 

The thin film gauges and corresponding analogue circuits were calibrated 
together by investigating their response to a range of known heating rates 
obtained by discharging a condenser through a Wheatstone bridge circuit, one 
arm of which was formed by the resistance thermometer. The active area of each 
gauge was determined from an enlarged photograph of the model. 

The equilibrium thermodynamic state of the gas behind the shock is completely 
determined by the initial channel gas pressure and the temperature and the 
shock speed. The pressure p1 was measured using a Wallace & Tiernan bourdon 
gauge and the temperature TI was assumed equal to room temperature. The 
shock speed was measured by timing the shock passage over a distance spanning 
the model of 254mm using a pair of piezo-electric shock detectors and trigger 
amplifiers together with a chronometer having a resolution of 0.1 p s  (Bernstein 
& Goodchild 1967). 

Further details of the apparatus and its calibration are given by Davies 
(1968). 

(ii) Experimental results 
The rather large leading edge wedge angle used on the model gives rise to flow 
conditions which do not strictly satisfy the assumptions made in the analysis. 
When the shock-induced flow is subsonic the upper, flat surface flow is affected 
by the lower surface. This is also true of those cases investigated for whichM, > 1. 
The highest flow Mach number M, investigated was about 1.84. The largest wedge 
angle for which the bow shock wave is attached at  this Mach number is about 20". 
Thus the bow shock would be detached for all the conditions investigated (for 
which M2 > 1) and the upper surface flow was not strictly independent of that 
on the lower wedge surface. Moreover, the local flow conditions on the flat surface 
would be modified since the gas initially upstream of the leading edge (a < 1) 
would pass through this bow shock. Even were the lower wedge surface shock 
attached, the formation of the boundary layer itself introduces a displacement 

7-2 
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effect which gives rise to a shock, albeit attached. No account of this shock is 
taken in the theory. It is, however, likely to be weak, since except at very low 
densities the rate of boundary-layer growth with distance from the leading edge 
is small. Under such conditions the angle the shock makes with the oncoming 
flow is close to the Mach angle. Thus some measure of the 'bluntness effect ' may 
be obtained by examining schlieren photographs of the flow and noting the extent 
of that portion of the shock which is highly curved. The curved region gives rise 
to an entropy layer which may significantly alter the downstream flow. 

The extent of this deficiency in the experimental arrangement is not easy 
to determine. That the effect was small for all the conditions investigated is in- 
ferred from the good agreement between theory and experiment for the laminar 
boundary-layer case. 

Further evidence in support of this conclusion is afforded by the schlieren 
photograph reproduced in figure 14, plate 1. This was taken at  a shock Mach 
number of 5.3 using a different model with a wedge angle of 22.5") in a smaller 
shock tube, since the 76.2 mm square shock tube is not equipped with windows. 

In  addition the mounting is somewhat different, the instrumented plate being 
supported by dowels located in the side walls of the shock tube. (The support 
for the model shown in figure 14 is hollow so that the undersurface flow is not 
completely blocked.) 

The Mach number M, of the flow behind the incident shock is 1.86, so that the 
undersurface shock is close to attachment. The upper surface shock is highly 
curved over a very small region only and the angle the linear portion makes 
with the oncoming flow is only about 5' greater than the Mach angle. The reflexion 
of this wave from the upper wall of the shock tube is very close to the Mach angle 
and it decays rapidly. We may infer that the entropy gradients in the flow are 
not large except in the region very close to the leading edge. The effect of the 
bow shock on the heat transfer rate is thus likely to be small at  distances greater 
than about two plate thicknesses from the leading edge which corresponds 
approximately to the position of the leading usable gauge on the instrumented 
model. 

The experiments were performed over a range of shock Mach numbers W,, with 
a variety of initial channel pressures p,. The tests fall into three groups according 
to which parameters were varied. In  the first group W,, was varied by adjust- 
ing the channel pressure p ,  at constant driver pressure, and conditions were 
examined at  two fixed positions on the plate. In  the second group conditions were 
examined at  several stations on the plate at  fixed values of shock Mach number 
and channel pressure. One gauge was used throughout this series as a monitor. 
In the final group p ,  (and hence Reynolds number) was varied while conditions 
were investigated at two particular stations at fixed shock Mach numbers. 

In general terms the ' output waveforms ' of the transducers accord qualita- 
tively with those predicted in 9 2 .  The jump in temperature followed by a plateau 
and then a slow rise is paralleled by an initially high heat transfer rate at shock 
passage followed by a fall, the rate of which diminishes with time as long as the 
boundary layer remains laminar, but may increase again if non-laminar flow 
appears. 
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The initial step rise in temperature and the corresponding heat transfer rate 
which is inversely proportional to the square root of time since shock passage 
broadly confirm Mirels's results. Numerical comparisons are shown in figure 5 
where S t  JRezs is plotted against W,, and in figure 4 where ATwlJpl is plotted 

1-0 
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0.05 
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G 1 2 3 4 5 6 

Shock Mach number, W,, 
FIGURE 4. Initial wall temperature rise. --, Mirels (1956, 1961). 
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pp constant 

2 3 4 5 
Shock Mach number, Wll 

FIGURE 5. Comparison of results with Mirels's analysis for the quasi-steady laminar 
boundary layer. Experimental results : 0, group 1 ; + , group 2 ; x , g o u p  3. 
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1 

Empirical extent of unsteady 
flow region 

a:059 p ’ a = 1  Row region 

FIGURE 6. Wall heat transfer rate in the interaction region. (a)  Boundary layer becomes 
steady laminar. W,, = 5.18, p ,  = 5.5 tom, x: = 34.9mm. ( b )  Boundary layer becomes 
steady non-laminar. W,, = 3.56, p ,  = 34 tom, x: = 44 mm. 
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against Kl. All the data reduction has been carried out using the imperfect gas 
properties behind the shock (Bernstein 1963 b) together with the thermodynamic 
properties of nitrogen as given by Woolley (1956). Better agreement in figure 4 
suggests either some errors in the calibration of the analogue network, or it mag 
reflect the fact that Mirels’s interpolation formulae for pp variable were based 
upon computations for air, whereas these data were obtained in nitrogen. 

1.5 

1 4  

- 
- 

X 

a 

FIGURE 7. Comparison of experimental results at z = 34.9 mm with the analysis of Lam 
& Crocco. x ,  W,, = 5.18, p,/torr 7 5.5; 0, W,, = 4.8, p,/torr = 8.5; +, Wll = 4-5, 
p,/torr = 11.5; 0, W,, = 4.2. pl/torr = 16.0; - , pp constant, Lam & Crocco (1958); 

, p,u variable, steady flow asymptote, equation (15). 

At low values of the Reynolds number, the heat transfer rate continues to 
diminish with time at  any point on the plate. Even after the arrival of the leading 
edge particle (a = 1) at any station, the flow although inherently unsteady 
shows little change from the Mirels’ type flow. The temperature begins to rise 
but slowly, whilethe heat transferrate continues to fall (figure 6 ( a ) )  at arate nearly 
proportiond to (time)-&. 
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This accords with the predictions of Lam & Crocco for the laminar boundary 
layer. The results in this region (0 < ct < 1)  are shown in more detail in figure 7 
where St JBe, is plotted aginst a for several values of shock Mach number and 
initial channel pressure. All the data in figure 7 are taken from transducers at  
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FIGURE 8. Comparison of experimental results at z = 34.9 mm with the analysis of Lam & 
Crocco. - , pp constant, Lam & Crocco (1958); 0, W,, = 3.92, p,/torr = 22; X ,  

W,, = 3.52, p,/torr = 34; +, W,, = 3.06, pl/torr = 61. 

positions on the plate over which the boundary layer is assumed to have remained 
laminar. It can be seen that St JRe, is substantially constant for a 7 0-3 as pre- 
dicted. The absolute magnitudes of St JRe, differ by up to 20 yo from the values 
computed by Lam, This discrepancy corresponds with that obtained in the 
quasi-steady, Mirels’ type boundary layer, and is in part at  least, accounted 
for by the assumption pp = constant. 

At  higher Reynolds numbers the heat transfer rates depart more or less 
radically from the predictions of Lam & Crocco. It is inferred that the boundary 
layer was no longer laminar. Figures 8 and 9 show results in the range a < 1 
when the flow did not remain laminar. Figure 8 illustrates the effect of changing 



The shock-induced boundary layer on u $at plate 105 

shock Mach number and channel pressure for a fixed position on the plate. 
Figure 9 shows the conditions at  several stations on the plate for constant flow 
conditions. Although St JRe, is not an appropriate parameter for a non-laminar 
boundary layer, it is, nevertheless) useful in showing departures from laminar 
flow; moreover constancy of StdRe, at any position on the plate (and hence 
constant Re,) implies constant heat transfer rate. It is clear from figures 8 and 9 
that when the boundary layer becomes non-laminar steady conditions are 

t 

Lam 

1 0  0.9 0 8  0.7 0.6 0.5 0.4 0 3  0 2  
U 

FIGURE 9. Superposition of results from several positions on the plate under nominally 
constant flow conditions. p,/torr = 34: 0, W,, = 3.65, x/mm = 26.5; A ,  W,, =3.51, 
x/mm = 34.9; 0, W,, = 3.56, xjmm = 44.0; x , W,, = 3.50, x/mm = 53.1 ; +, W,, = 3.55, 
x/mm = 62.2. 

reached earlier) that is at a greater value of a) than they would be in a laminar 
boundary layer. This agrees with the expectation that turbulent diffusion would 
provide a more rapid steadying influence than molecular diffusion. In  order to 
gain further insight into the state of the boundary layer when it finally became 
steady, the final steady Stanton number was plotted against Re,. This is shown 
in figure 10. The data conform to the 'familiar shape' indicating laminar, tran- 
sitional and turbulent boundary-layer regions. In  addition the steady Stanton 
number was also plotted against the Reynolds number Re, based on the distance 
xs behind the shock when this steady condition was first attained at a,ny position 
on the plate (figure 11). The data are again seen to have the same familiar shape. 

We shall return to these correlations in a later discussion. In  the meantime we 
are now in a position to pick out several interesting features in the heat transfer 
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records, as depicted in figure 7 to 11. These are best illustrated on an (x, t )  dia- 
gram and the systematic results of figure 9 for W,, = 3.5 are replotted in this way 
on figure l 2 ( a ) .  
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FIGURE 10. Correlation of the steady heat transfer rate with a Reynolds number based 
on the distance x from the leading edge of the plate. - - - - -, equation (15). 
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FIGURE 11. Correlation of the steady heat transfer rate with a Reynolds number based on 
the distance x, between the shock and the transducer, when the boundary layer flow above 
the transducer first becomes steady. Also shown (0) are points for the quasi-steady laminar 
boundary layer. 

In order to appreciate fully the significance of this diagram each of the 
lines drawn thereon will be discussed separately. (a)  The first disturbance 
detected by any transducer is of course the arrival of the shock. This is the 
line CL = wl/uz = 1.24. ( b )  The line CL = 1 corresponding to the leading-edge 
particle path is shown. This divides the diagram into two domains. One of 
these, the Mirels’ quasi-steady region 1 < a < wl/uz is completely unaffected 
by anything which takes place in the second region 0 < a ,< 1. Almost the 
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entire quasi-steady region was laminar in this case. ( c )  The line il! = 0.57 cor- 
responds to the maximum laminar boundary-layer thickness at  this shock 
Mach number, according to the results of Lam. (d )  The line a = 0.3 is the 
approximate bound for the onset of steady laminar boundary-layer flow. 

150 

Heat transfer 
rate constant a-0.6 -4 

Distance from leading edge, x/mm 

(4 
FIGURE 12. Correlation of results in the distance-time plane with particular reference to 
the behaviour of transition to turbulence. (a)  W,, = 3.5, p ,  = 34 tom. ( b )  w,, = 2.0, 
p ,  = 280 torr. 

( e )  The 'transition path ' shows the time at which the heat transfer rate departed 
from the regular behaviour which was assumed to correspond to laminar flow. 
This point could be readily inferred by plotting a, 'us. (t - tJ-4, see figure 6 ( b ) .  The 
transition path is seen to be more or less parallel to the shock path even in the 
inherently unsteady interaction region a < 1. This corresponds with the results 
of Lam which indicate that the rate of diminution of qw with time is little different 
from that in the quasi-steady region. In this latter region, as noted earlier, the 
boundary-layer thickness is defined by distance zs from the shock, so that tran- 
sition would be expected to follow a fixed distance behind the shock in any one 
set of test conditions. This has been confirmed by the work of Hartunian 
et al. (1960). (f) The intersection between the line a = 0.57 and the tran- 
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sition path is taken to correspond to the first point on the plate which experi- 
ences non-laminar flow in these conditions, At this point, the boundary-layer 
momentum thickness s” first reaches its critical value QCrit. A line # = occrit is 
drawn, using Lam’s results, between a = 0.57 and ct = 0.3. Transition is expected 

~- ~~~~~ 

Heat transfer rate 
constant u = 0.86 

Distance from leading edge, z/mm 

( b )  
FIGURE 126. For legend see previous page. 

to move upstream along some such path as discussed in § 2. The Reynolds number 
Re, corresponding to this fonvardmost appearance of non-laminar flow is indi- 
cated. (9)  Finally, a line is drawn joining those points (open circles) which denote 
the attainment of steady, non-laminar flow. Part of this line is a straight line 
a = aF which passes through the origin of the ( x , t )  plane. It is found that all 
those points which lie on a = a, have values of St and Re, such that they corre- 
spond to a fully developed turbulent boundary layer as inferred from the correla- 
tion of figure 10. Moreover those points not on OL = a, have values which accord- 
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ing t o  figure 10 are appropriate to the steady transitional boundary layer. The 
downstream limit of this steady transitional boundary layer has been estimated 
on the diagram and the corresponding value of Re, is indicated. We are thus able 
to infer the steady ‘transition-length’ xtr under these conditions (wall to free- 
stream temperature ratio TWIT2 = 0.31, M, = 1.54) as corresponding to aReynolds 
number range 0.8 2 Reztr x 

Figure 12 (b)  shows an (x, t )  diagram for a shock Mach number W,, = 2.7 The 
trends are similar but here the transition path lies in the quasi-steady domain. 
The transition length Reynolds number range for this case 

6 2.6. 

(TWIT2 = 0.593,M2 = 0.97) is 0.9 7 Rext,x 2 5.5.  

This method of determining the length of the transitional boundary layer 
warrants further investigation, since it seems to define it within fairly narrow 
limits. 

One feature of figures 12 (a)  and (6 )  is that a, M +wl/uz. That this is a ‘general 
(empirical) result’ may be demonstrated in the following way. The turbulent 
boundary-layer data are correlated in figures 10 and 11 by approximate relations 

St(Re,)nl = C, when q, = constant of the form 

and 

Both these relations are applicable to that point at  which the turbulent boundary 
layer is first steady and hence we may determine the corresponding values of 
x ( = xR, say) and x, ( = x,,). Within the experimental error, n, = n2 = 0.2 and 
C, = C, = 0.030 so that 

xs = xs,; 

that is, when part of the steady boundary layer is fully turbulent half of the total 
boundary-layer length is steady (with the possible exception of a small region in 
the transitional boundary layer). It follows that 

X t  (Rexsc,)?lz = C2 when qw first reaches its steady value. 

a, = +w,/u2. 

The implication is that stronger shocks (lower wl/u2) require longer times to 
produce steady turbulent boundary layers. In  the context of the shock tube as a 
wind tunnel device, this is a disadvantage, since the available test time decreases 
severely with increasing shock strength. 

It remains to compare the steady turbulent heat transfer rate data with 
previous data correlations. To a large extent one is handicapped here because 
the vast majority of workers have been concerned with skin friction measure- 
ments (see, for example, Spalding & Chi 1964) and in order to predict heat trans- 
fer rates a Reynolds analogy factor R a  is required. 

According to Spence (1960) a Reynolds analogy factor of 1.18 is an appropriate 
value for the present conditions. When this value is used in conjunction with his 

t For the chamber/channel length ratio of this shock tube, the head of the reflected 
rarefaction is expected to overtake the shock near the model a t  this shock strength when 
a hydrogen/nitrogen combination is used. No evidence of this was detected in the heat 
transfer rate records, but the corresponding pressure and temperature changes would be 
very small over the time scale of interest here. 
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The data show somewhat less scatter than is apparent in figure 10, but they 
fall some 20 % below Spence’s curve. If  his correlation of the skin-friction data is 
regarded as acceptable, a Reynolds analogy factor closer to unity would seem 
more realistic, see figure 13. This would correspond to a ‘turbulent Prandtl 
number ’, ctiurb, equal to unity which has been argued as a reasonable value on the 
grounds that energy and momentum transfer both take place largeIy as result 
of turbulent mixing. 

Some further support for this value is given by the results of Wallace (1967) 
who measured skin friction and heat transfer rates simultaneously in a hypersonic 
shock tunnel flow. His data were taken at  somewhat higher Reynolds numbers 
and flow Mach numbers than those reported here and, although his values of 
wall to freestream temperature ratios are different, the ratios of T, to stream 
stagnation temperatureare similar. Although Wallace’s results show some scatter, 
his values of Ra are on average, only slightly above unity. There remains more 
than sufficient uncertainty, however, to warrant a systematic investigation of 
this matter. 
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4. Concluding remarks 
The experimental results reported in $ 3  have clearly established the overall 

reliability of the laminar theory due to Lam & Crocco. Further evidence has been 
presented supporting the quasi-steady laminar boundary-layer theory of Mirels 
for the boundary layer in the neighbourhood of the shock. 
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correlation for skin friction data, based upon the mean enthalpy concept, (17) 
is obtained. The experimental data of figure 10 have been recomputed taking 
account of the laminar and transitional boundary layer ahead of the turbulent 
region by estimating a ‘false origin’ for the latter. In  addition the heat transfer 
rate coefficient and the Reynolds number have been calculated using the gas 
properties evaluated at  the mean enthalpy given by (18). The data together with 
Spence’s ‘prediction’ are plotted in figure 13. 
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The transition to  turbulence in this inherently unsteady boundary layer has 
also been examined experimentally. Phenomenological arguments are put to 
explain this transition process and the measured data are shown to provide 
circumstantial evidence in support of these arguments. Steady heat transfer 
rates have also been measured in the laminar, transitional and turbulent bound- 
ary layers. 

The approach to steady conditions has been discussed in relation to its bearing 
on the available test time in the uniform hot flow behind the shock in a shock 
tube. For the laminar boundary layer with zero pressure gradient the flow is 
substantially steady at  a distance x from the leading edge of the plate after a time 
t given by 

where t is measured from the instant of shock arrival at  x = 0. This accords with 
theory. 

When the boundary layer is turbulent, it  has been discovered empirically that 
half the boundary-layer length is steady. That is, the flow over a flat plate should 
have a steady boundary layer when the shock initiating the motion is about one 
chord downstream of the trailing edge. This implies that the length of the test 
gas sample in a shock tube, that is the distance between the shock and contact 
region, should be at  least two model chord lengths. When pressure gradients 
exist or flow separation occurs this may be insufficient. The requirements under 
these circumstances need investigating. 

The steady laminar heat transfer rates show fairly good agreement with the 
predictions of Crocco as approximated by Young (1953). The turbulent data 
correlate with Spence’s relation based on a mean enthalpy concept only if a 
Reynolds analogy factor close to unity is used. Spence himself suggests a rather 
higher value than this, but there is evidence (Wallace 1967) that a value of unity 
is not unrealistic. I f  this is so, Spence’s skin-friction values would apply, though 
Wallace found rather lower values in his experiments than those given by Spence’s 
relation. This aspect of the work needs further investigation. 

t = x/o.3zC2, 

The authors would like to express their gratitude to the Ministry of Technology 
who supported this work under an extra-mural agreement. 
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